Skip to main content

Confronto Lineare Regressione To The Movimento Medie E Smoothing Tecniche


Previsione lisciando Tecniche Questo sito è parte del JavaScript e-laboratori oggetti per il processo decisionale di apprendimento. Altri JavaScript in questa serie sono suddivise in diverse aree di applicazione nella sezione MENU in questa pagina. Una serie temporale è una sequenza di osservazioni che vengono ordinati nel tempo. Inerente la raccolta di dati assunto nel tempo è una forma di variazione casuale. Esistono metodi per ridurre di annullare l'effetto dovuto alla variazione casuale. Ampiamente tecniche utilizzate sono levigante. Queste tecniche, se applicato correttamente, rivela più chiaramente le tendenze di fondo. Inserire le serie storiche Riga-saggio in sequenza, a partire dall'angolo sinistro in alto, e il parametro (s), quindi fare clic sul pulsante Calcola per ottenere la previsione di un periodo avanti. caselle vuote non sono inclusi nei calcoli, ma gli zeri sono. In introdurre i dati per passare da cellula a cellula nel data-matrix utilizzare il tasto Tab non freccia o inserire le chiavi. Caratteristiche di serie temporali, che potrebbero essere rivelato esaminando il suo grafico. con i valori previsti, e il comportamento dei residui, la modellazione di previsione condizione. Medie mobili: Le medie mobili sono tra le tecniche più popolari per la pre-elaborazione delle serie storiche. Essi sono utilizzati per filtrare il rumore bianco casuale dai dati, per rendere più agevole la serie storica o anche per sottolineare alcuni componenti informativi contenuti nelle serie temporali. Esponenziale: Questo è uno schema molto popolare per la produzione di una serie storica levigata. Considerando che le medie mobili osservazioni passate hanno lo stesso peso, esponenziale assegna in modo esponenziale diminuzione pesi come l'osservazione invecchiano. In altre parole, osservazioni recenti sono date relativamente più peso nella previsione che le osservazioni più anziani. Doppia esponenziale è meglio alle tendenze di manipolazione. Triple esponenziale è meglio a gestire le tendenze parabola. Una media mobile exponenentially ponderata con una costante livellamento a. corrisponde all'incirca ad una media mobile semplice di lunghezza (cioè periodo) n, dove n e sono legati da: 2 (n1) o N (2 - a) a. Così, per esempio, una media mobile exponenentially ponderato con una lisciatura costante pari a 0,1 corrisponderebbe all'incirca ad una media mobile 19 giorni. E una media mobile semplice di 40 giorni corrisponderebbe grosso modo a una media mobile esponenziale ponderata con una costante livellamento pari a 0,04,878 mila. Holts lineare esponenziale: Supponiamo che la serie temporale è non stagionale, ma fa tendenza del display. Metodo Holts stima sia il livello attuale e la tendenza attuale. Si noti che la media mobile semplice è caso particolare di livellamento esponenziale impostando il periodo di media mobile per la parte intera di (2-Alpha) Alpha. Per la maggior parte dei dati aziendali un parametro Alpha minore di 0,40 è spesso efficace. Tuttavia, si può eseguire una ricerca a griglia dello spazio dei parametri, con 0.1 al 0.9, con incrementi di 0,1. Quindi il miglior alfa ha il più piccolo errore assoluto medio (MA errore). Come confrontare diversi metodi di lisciatura: Anche se ci sono indicatori numerici per valutare l'accuratezza della tecnica di previsione, l'approccio più ampiamente è nell'uso confronto visivo di diverse previsioni per valutare la loro accuratezza e scegliere tra i vari metodi di previsione. In questo approccio, si deve tracciare (utilizzando, ad esempio Excel) sullo stesso grafico i valori originali di una variabile serie storiche ei valori previsti di diversi metodi di previsione diversi, facilitando in tal modo un confronto visivo. È possibile, come proiettando le ipotesi precedenti, levigando Tecniche JavaScript per ottenere i valori di previsione passato in base ad smoothing tecniche che utilizzano il parametro unico singolo. Holt e Winters metodi utilizzano due e tre parametri, rispettivamente, quindi non è un compito facile per selezionare l'ottimale, o anche vicine ai valori ottimali per tentativi ed errori per i parametri. Il singolo di livellamento esponenziale sottolinea la prospettiva a corto raggio si imposta il livello di all'ultima osservazione e si basa a condizione che non vi è alcuna tendenza. La regressione lineare, che si inserisce una linea minimi quadrati ai dati storici (o dati storici trasformati), rappresenta il lungo raggio, che è condizionato sull'andamento base. Holts livellamento esponenziale lineare acquisisce informazioni sulla recente tendenza. I parametri nel modello Holts è livelli-parametro che dovrebbe essere diminuita quando la quantità di variazione dei dati è grande, e tendenze a parametro dovrebbe essere aumentato se la direzione recente tendenza è sostenuta dalla causale alcuni fattori. Previsione a breve termine: Si noti che ogni JavaScript in questa pagina fornisce una previsione one-step-avanti. Per ottenere una previsione in due fasi-avanti. è sufficiente aggiungere il valore previsto per la fine di voi dati di serie temporali e quindi fare clic sullo stesso pulsante Calcola. Si può ripetere questo processo per un paio di volte al fine di ottenere a breve termine necessaria forecasts.3 livelli previsti di comprensione e metodi che è possibile generare sia di dettaglio (singolo elemento) le previsioni e di sintesi (linea di prodotto) le previsioni che riflettono modelli di domanda di prodotto. Il sistema analizza passato vendite per calcolare le previsioni utilizzando 12 metodi di previsione. Le previsioni includono informazioni dettagliate a livello di articolo e più alto livello di informazioni su una filiale o la società nel suo complesso. 3.1 Previsione Criteri di valutazione delle prestazioni In base alla selezione di opzioni di elaborazione e sulle tendenze e modelli nei dati di vendita, alcuni metodi di previsione prestazioni migliori di altri per una determinata serie di dati storici. Un metodo di previsione che è appropriato per un prodotto potrebbe non essere appropriato per un altro prodotto. Si potrebbe scoprire che un metodo di previsione che fornisce buoni risultati in una fase del ciclo di vita del prodotto rimane appropriata durante l'intero ciclo di vita. È possibile scegliere tra due metodi per valutare le prestazioni attuali dei metodi di previsione: Percentuale di accuratezza (POA). Media deviazione assoluta (MAD). Entrambi questi metodi di valutazione delle prestazioni richiedono dati di vendita storici per un periodo specificato. Questo periodo è chiamato un periodo holdout o un periodo di best fit. I dati di questo periodo è utilizzato come base per raccomandare quale metodo di previsione per la fabbricazione di proiezione previsioni successivo. Questa raccomandazione è specifico per ciascun prodotto e può cambiare da una generazione previsioni a quella successiva. 3.1.1 Best Fit Il sistema suggerisce la migliore previsione fit applicando i metodi di previsione selezionati in passato cronologia degli ordini di vendita e confrontando la simulazione del tempo alla storia reale. Quando si genera una migliore previsione in forma, il sistema confronta effettive storie ordini di vendita per le previsioni per un periodo di tempo specifico e calcola quanto accuratamente ogni metodo di previsione diverso previsto vendite. Quindi il sistema raccomanda la previsione più accurata come la soluzione migliore. Questo grafico illustra migliori previsioni fit: Figura 3-1 Scelta migliore prevedere il sistema utilizza questa sequenza di passaggi per determinare la soluzione migliore: utilizzare ogni metodo indicato per simulare una previsione per il periodo di dati di controllo. Confronta le vendite reali alle previsioni simulate per il periodo di dati di controllo. Calcolare il POA o il MAD per determinare quale metodo di previsione più si avvicina ultimi vendite effettive. Il sistema utilizza sia POA o MAD, in base alle opzioni di elaborazione selezionate. Consiglia best fit previsioni dal POA che è più vicino al 100 per cento (sopra o sotto) o il MAD che è più vicino a zero. 3.2 Metodi di previsione JD Edwards EnterpriseOne Previsioni Management utilizza 12 metodi per la previsione quantitativa e indica quale metodo fornisce la soluzione migliore per la situazione di previsione. Questa sezione discute: Metodo 1: cento rispetto allo scorso anno. Metodo 2: Percentuale calcolata rispetto allo scorso anno. Metodo 3: l'anno scorso a questo anno. Metodo 4: media mobile. Metodo 5: Lineare approssimazione. Metodo 6: regressioni al minimo quadrato. Metodo 7: secondo grado approssimazione. Metodo 8: metodo flessibile. Metodo 9: ponderata media mobile. Metodo 10: Linear Smoothing. Metodo 11: esponenziale. Metodo 12: livellamento esponenziale con Trend e la stagionalità. Specificare il metodo che si desidera utilizzare nelle opzioni di elaborazione per il programma di previsione Generation (R34650). La maggior parte di questi metodi forniscono un controllo limitato. Ad esempio, il peso posto sulla recente dati storici o l'intervallo di date di dati storici che viene utilizzato nei calcoli può essere specificato dall'utente. Gli esempi nella guida indicano la procedura di calcolo per ciascuno dei metodi di previsione disponibili, in un insieme identico di dati storici. Gli esempi di metodo nella parte all'uso guida o tutti questi insiemi di dati, che è dati storici degli ultimi due anni. La proiezione del tempo va in prossimo anno. Questi dati la storia delle vendite è stabile con piccoli aumenti stagionali di luglio e dicembre. Questo modello è caratteristica di un prodotto maturo che potrebbe essere avvicinando obsolescenza. 3.2.1 Metodo 1: cento rispetto allo scorso anno Questo metodo utilizza il cento rispetto allo scorso anno formula per moltiplicare ciascun periodo di previsione per la percentuale di aumento o diminuzione specificato. Per prevedere la domanda, questo metodo richiede il numero di periodi per la migliore vestibilità più un anno di storia delle vendite. Questo metodo è utile per prevedere la domanda per gli elementi stagionali con la crescita o il declino. 3.2.1.1 Esempio: Metodo 1: cento rispetto allo scorso anno, il cento rispetto allo scorso anno formula moltiplica i dati di vendita rispetto all'anno precedente di un fattore si specifica e quindi i progetti che si traducono nel corso del prossimo anno. Questo metodo potrebbe essere utile nel budget per simulare l'effetto di un tasso di crescita specificata o quando la storia di vendita ha una significativa componente stagionale. specifiche di previsione: fattore di moltiplicazione. Ad esempio, specificare 110 in opzione di elaborazione per aumentare i anni le vendite dati storici precedenti del 10 per cento. Richiesto storia delle vendite: un anno per il calcolo della previsione, più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit) che si specifica. Questa tabella è storia utilizzato nel calcolo del tempo: febbraio previsione è pari a 117 volte 1.1 128,7 arrotondato al 129. marzo previsione è uguale a 115 volte 1.1 126,5 arrotondata a 127. 3.2.2 Metodo 2: Percentuale calcolata rispetto allo scorso anno Questo metodo utilizza la percentuale calcolato su Ultimo formula anno per confrontare gli ultimi vendite dei periodi specificati per le vendite dagli stessi periodi dell'anno precedente. Il sistema determina un aumento o diminuzione percentuale, e quindi moltiplica ogni periodo per la percentuale per determinare la previsione. Per prevedere la domanda, questo metodo richiede il numero di periodi della storia di ordine di vendita più un anno di storia delle vendite. Questo metodo è utile per prevedere la domanda a breve termine per gli elementi stagionali con la crescita o il declino. 3.2.2.1 Esempio: Metodo 2: Percentuale calcolata rispetto allo scorso anno la percentuale calcolata rispetto allo scorso anno formula moltiplica i dati di vendita rispetto all'anno precedente di un fattore che viene calcolato dal sistema, e poi si proietta quel risultato per il prossimo anno. Questo metodo può essere utile nel progettare l'effetto di estendere il tasso di crescita recente di un prodotto nel prossimo preservando un andamento stagionale che è presente nella storia vendite. specifiche Previsione: Gamma di storia delle vendite da utilizzare nel calcolo del tasso di crescita. Ad esempio, specificare n è uguale a 4 nella opzione di elaborazione per confrontare la storia delle vendite per gli ultimi quattro periodi a quelle stesse quattro periodi dell'anno precedente. Utilizzare il rapporto calcolato per rendere la proiezione per il prossimo anno. Richiesto storia delle vendite: un anno per il calcolo della previsione più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzata nel calcolo del tempo, n 4 data: febbraio previsione è pari a 117 volte 0,9766 114.26 arrotondato al 114. marzo previsione è pari 115 volte 0,9766 112.31 arrotondato al 112. 3.2.3 Metodo 3: l'anno scorso a questo anno Questo metodo utilizza ultimi anni le vendite per i prossimi anni previsione. Per prevedere la domanda, questo metodo richiede il numero di periodi di meglio si adattano più un anno della storia degli ordini di vendita. Questo metodo è utile per prevedere la domanda per i prodotti maturi con la domanda di livello o di domanda stagionale, senza una tendenza. 3.2.3.1 Esempio: Metodo 3: l'anno scorso a questo anno l'ultimo anno a questa formula Anno copia i dati delle vendite rispetto all'anno precedente per l'anno successivo. Questo metodo potrebbe essere utile nel budget per simulare le vendite al livello attuale. Il prodotto è maturo e non ha alcuna tendenza nel lungo periodo, ma un significativo modello di domanda stagionale potrebbe esistere. specifiche Previsione: Nessuno. Richiesto storia delle vendite: un anno per il calcolo della previsione più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: January Previsioni uguale a gennaio dello scorso anno con un valore di previsione di 128. febbraio previsione è pari a febbraio dello scorso anno con un valore di previsione di 117. marzo previsione è pari a marzo dello scorso anno con un valore di previsione di 115. 3.2.4 metodo 4: media mobile Questo metodo utilizza la formula media Trasferirsi in media il numero specificato di periodi di proiettare il periodo successivo. Si dovrebbe ricalcolare spesso (mensile, o almeno ogni tre mesi) per riflettere la modifica livello di domanda. Per prevedere la domanda, questo metodo richiede il numero di periodi di meglio si adattano più il numero di periodi della storia degli ordini di vendita. Questo metodo è utile per prevedere la domanda di prodotti maturi senza tendenza. 3.2.4.1 Esempio: Metodo 4: media mobile media mobile (MA) è un metodo popolare per la media dei risultati della recente storia delle vendite per determinare una proiezione per il breve termine. Il metodo di previsione MA ritardo rispetto tendenze. Previsioni pregiudizi e gli errori sistematici si verificano quando la storia di vendita del prodotto presenta forte tendenza o modelli stagionali. Questo metodo funziona meglio per le previsioni a breve gamma di prodotti maturi che per i prodotti che sono in fase di crescita o di obsolescenza del ciclo di vita. specifiche Previsione: n è uguale al numero di periodi della storia delle vendite da utilizzare nel calcolo del tempo. Ad esempio, specificare n 4 nella opzione di elaborazione di utilizzare i più recenti quattro periodi come base per la proiezione nel prossimo periodo di tempo. Un grande valore di n (ad esempio 12) richiede più storia di vendita. Essa si traduce in una previsione stabile, ma è lento a riconoscere cambiamenti nel livello di vendite. Viceversa, un valore piccolo per n (ad esempio 3) è più veloce di rispondere a cambiamenti nel livello di vendite, ma le previsioni fluttui così ampiamente che la produzione non può rispondere alle variazioni. Richiesto storia delle vendite: n più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: febbraio previsione è pari a (114 119 137 125) 4 123.75 arrotondato al 124. marzo previsione è pari a (119 137 125 124) 4 126.25 arrotondato a 126. 3.2.5 Metodo 5: Lineare Approssimazione Questo metodo utilizza la formula lineare approssimazione per calcolare un trend dal numero di periodi della storia degli ordini di vendita e di proiettare questa tendenza alla previsione. Si dovrebbe ricalcolare l'andamento mensile per rilevare i cambiamenti nelle tendenze. Questo metodo richiede il numero di periodi di meglio si adattano più il numero di periodi della storia degli ordini di vendita specificate. Questo metodo è utile per prevedere la domanda di nuovi prodotti, o prodotti con trend positivi o negativi consistenti che non sono a causa di fluttuazioni stagionali. 3.2.5.1 Esempio: Metodo 5: lineare approssimazione lineare Approssimazione calcola una tendenza che si basa su due punti di vendita i dati della cronologia. Questi due punti definiscono una linea di tendenza retta che si proietta nel futuro. Utilizzare questo metodo con cautela perché le previsioni a lungo raggio vengono sfruttate da piccole variazioni in soli due punti dati. specifiche Previsione: n è uguale al punto di dati nella storia delle vendite che viene confrontato con il più recente punto dati per identificare una tendenza. Ad esempio, specificare n 4 di utilizzare la differenza tra il dicembre (dati più recenti) e agosto (quattro periodi prima del dicembre) come base per il calcolo del trend. Minimo richiesto storia delle vendite: n più 1 più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: January previsioni di dicembre di un anno 1 (Trend), che è pari a 137 (1 volta 2) 139. febbraio previsioni di dicembre di un anno 1 (Trend), che è pari a 137 (2 volte 2) 141. marzo previsioni di dicembre di un anno 1 (Trend), che equivale a 137 (3 volte 2) 143. 3.2.6 metodo 6: minimi quadrati Regressione minimi quadrati di regressione (LSR) metodo deriva una equazione che descrive una relazione linea retta tra i dati storici di vendita e il passaggio del tempo. LSR inserisce una linea per la gamma selezionata di dati in modo che la somma dei quadrati delle differenze tra i punti dati vendite effettive e la linea di regressione sono ridotti al minimo. La previsione è una proiezione di questa linea retta verso il futuro. Questo metodo richiede storia dati di vendita per il periodo che è rappresentato dal numero di periodi best fit più il numero specificato di periodi di dati storici. Il requisito minimo è di due punti di dati storici. Questo metodo è utile per prevedere la domanda quando una tendenza lineare è nei dati. 3.2.6.1 Esempio: Metodo 6: minimi quadrati di regressione lineare, o Least Squares Regression (LSR), è il metodo più popolare per l'identificazione di un trend lineare nei dati storici di vendita. Il metodo calcola i valori di A e B per essere utilizzato nella formula: Questa equazione descrive una linea retta, in cui Y rappresenta vendite e X rappresenta il tempo. La regressione lineare è lento a riconoscere i punti di svolta e gli spostamenti di funzioni passo della domanda. La regressione lineare inserisce una linea retta ai dati, anche quando i dati sono stagionali o meglio descritto da una curva. Quando i dati vendite di storia segue una curva o ha un forte andamento stagionale, previsto pregiudizi e si verificano errori sistematici. specifiche Previsione: n uguale i periodi della storia delle vendite che verranno utilizzati nel calcolo dei valori per a e b. Ad esempio, specificare n 4 di utilizzare la storia da settembre a dicembre come base per i calcoli. Quando i dati sono disponibili, sarebbe normalmente utilizzato un n grande (ad esempio n 24). LSR definisce una linea per due soli punti di dati. Per questo esempio, un valore piccolo per n (n = 4) è stato scelto per ridurre i calcoli manuali necessarie per verificare i risultati. Minimo richiesto storia delle vendite: n periodi più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: marzo previsione è pari a 119,5 (7 volte 2,3) 135,6 arrotondato a 136. 3.2.7 Metodo 7: secondo grado Approssimazione Per proiettare le previsioni, questo metodo utilizza la formula secondo grado di approssimazione per tracciare una curva che si basa sul numero di periodi di storia delle vendite. Questo metodo richiede il numero di periodi di meglio si adattano più il numero di periodi della storia degli ordini di vendita tre volte. Questo metodo non è utile per prevedere la domanda per un periodo a lungo termine. 3.2.7.1 Esempio: Metodo 7: secondo grado approssimazione lineare di regressione determina i valori di A e B nella formula previsioni Y a b X con l'obiettivo di una linea retta ai dati storici di vendita. Secondo grado ravvicinamento è simile, ma questo metodo determina valori di a, b, c nella formula questa previsione: Y a b X c X 2 L'obiettivo di questo metodo è quello di adattare una curva ai dati storici vendite. Questo metodo è utile quando un prodotto è nel passaggio tra le fasi del ciclo di vita. Ad esempio, quando un nuovo prodotto si sposta da introduzione a stadi di crescita, l'andamento delle vendite potrebbe accelerare. A causa del secondo termine di ordine, la previsione può avvicinarsi rapidamente infinito o scendere a zero (a seconda che il coefficiente c è positivo o negativo). Questo metodo è utile solo nel breve periodo. specifiche di previsione: la formula trovano a, b, c per adattarsi una curva a esattamente tre punti. Si specifica n, il numero di periodi di tempo di dati di accumulare in ognuno dei tre punti. In questo esempio, n 3. dati di vendita effettivi per aprile a giugno è combinata nel primo punto, Q1. Luglio a settembre vengono aggiunti insieme per creare Q2 e ottobre a dicembre somma da Q3. La curva è montato tre valori Q1, Q2, Q3 e. Richiesto storia delle vendite: 3 volte n periodi per il calcolo della previsione più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: Q0 (Jan) (febbraio) (Mar) Q1 (Apr) (Maggio) (giugno) che è uguale a 125 122 137 384 Q2 (luglio) (agosto) (settembre) che è uguale a 140 129 131 400 Q3 (ott) (Nov) (Dec) che è uguale a 114 119 137 370 la fase successiva prevede il calcolo dei tre coefficienti a, b, e c per essere utilizzata nella previsione formula Y ab X c X 2. Q1, Q2, Q3 e sono presentati sul grafico, in cui il tempo è tracciata sull'asse orizzontale. Q1 rappresenta vendite storiche totali per aprile, maggio e giugno ed è tracciata a X 1 Q2 corrisponde a luglio a settembre Q3 corrisponde ad ottobre a dicembre e Q4 rappresenta gennaio a marzo. Questo grafico illustra il tracciato di Q1, Q2, Q3, Q4 e per la seconda approssimazione grado: Figura 3-2 Rappresentazione grafica Q1, Q2, Q3, Q4 e per seconda approssimazione grado tre equazioni descrivono i tre punti sul grafico: (1) Q1 un bX cX 2 dove X 1 (Q1 abc) (2) Q2 un bX cX 2 dove X 2 (Q2 un 2b 4c) (3) Q3 un bX cX 2 dove X 3 (Q3 un 3b 9c) Risolvere le tre equazioni simultaneamente per trovare b, a, e c: Sottrai equazione 1 (1) la formula 2 (2) e risolvere per B: (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c sostituto questa equazione per b nell'equazione (3): (3) Q3 a 3 (Q2 ndash Q1) ndash 3c 9c un Q3 ndash 3 (2T ndash Q1) Infine, sostituire queste equazioni di a e B nell'equazione (1): (1) Q3 ndash 3 (Q2 ndash Q1) (Q2 ndash Q1) ndash 3c c Q1 c (Q3 ndash Q2) (Q1 ndash Q2) 2 Il metodo secondo grado Approssimazione calcola a, b, ec come segue: a Q3 ndash 3 (2T ndash Q1 ) 370 ndash 3 (400 ndash 384) 370 ndash 3 (16) 322 b (ndash Q1) ndash3c Q2 (400 ndash 384) ndash (3 volte ndash23) 16 69 85 C (Q3 ndash Q2) (Q1 ndash Q2) 2 ( 370 ndash 400) (384 ndash 400) 2 ndash23 si tratta di un calcolo di previsione secondo grado di approssimazione: Y a bX cX 2 322 85X (ndash23) (X 2) Quando X 4, Q4 322 340 ndash 368 294. La previsione è uguale a 294 3 98 per periodo. Quando X 5, Q5 322 425 ndash 575 172. La previsione è pari a 172 3 58.33 arrotondato a 57 per periodo. Quando X 6, Q6 322 510 ndash 828 4. La previsione è pari a 4 3 1,33 arrotondato a 1 per periodo. Questa è la previsione per il prossimo anno, l'anno scorso a questo anno: 3.2.8 Metodo 8: metodo flessibile Questo metodo consente di selezionare il miglior numero impeto di periodi della storia degli ordini di vendita che inizia n mesi prima della data di inizio del tempo, e per applicare un aumento o diminuzione percentuale fattore di moltiplicazione con cui modificare la previsione. Questo metodo è simile al metodo 1, cento rispetto allo scorso anno, tranne che è possibile specificare il numero di periodi che si utilizza come base. A seconda di cosa si seleziona come n, questo metodo richiede periodi di meglio si adattano più il numero di periodi di dati di vendita che è indicato. Questo metodo è utile per prevedere la domanda per una tendenza pianificata. 3.2.8.1 Esempio: Metodo 8: metodo flessibile Il metodo flessibile (per cento rispetto al n mesi prima) è simile al metodo 1, cento rispetto allo scorso anno. Entrambi i metodi si moltiplicano i dati di vendita provenienti da un periodo di tempo precedente di un fattore specificato da te, e quindi progetti che risultano nel futuro. Nella cento rispetto allo scorso anno il metodo, la proiezione si basa sui dati dello stesso periodo dell'esercizio precedente. È inoltre possibile utilizzare il metodo flessibile per specificare un periodo di tempo, altro rispetto allo stesso periodo l'anno scorso, da utilizzare come base per i calcoli. Fattore di moltiplicazione. Ad esempio, specificare 110 in opzione di elaborazione per aumentare le vendite precedenti dati storici del 10 per cento. periodo di base. Ad esempio, n 4 fa sì che la prima previsione ad essere basata su dati di vendita nel mese di settembre dello scorso anno. Minimo richiesto storia delle vendite: il numero di periodi di nuovo al periodo di base più il numero di periodi di tempo che è necessario per la valutazione delle prestazioni del tempo (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: 3.2.9 Metodo 9: Weighted Moving Average La Moving formula ponderata media è simile al metodo 4, Moving Average formula, perché la media è la storia mesi precedenti le vendite che proietta la successiva storia mesi le vendite. Tuttavia, con questa formula è possibile assegnare i pesi per ciascuno dei periodi precedenti. Questo metodo richiede il numero di periodi ponderati selezionati più il numero di periodi di dati migliore vestibilità. Simile a media mobile, questo metodo è in ritardo rispetto tendenze della domanda, quindi questo metodo non è raccomandato per i prodotti con le tendenze forti o stagionalità. Questo metodo è utile per prevedere la domanda per i prodotti maturi con la domanda che è relativamente livello. 3.2.9.1 Esempio: Metodo 9: ponderata media mobile Il metodo ponderata media mobile (WMA) è simile al metodo 4, media mobile (MA). Tuttavia, è possibile assegnare i pesi diseguali ai dati storici quando si utilizza WMA. Il metodo calcola una media ponderata di storia recente vendite per arrivare ad una proiezione per il breve termine. Dati più recenti è di solito un fattore di ponderazione maggiore di dati più vecchi, in modo da WMA è più sensibile alle variazioni del livello delle vendite. Tuttavia, pregiudizi meteorologiche e errori sistematici si verificano quando la storia di vendita del prodotto presenta le tendenze forti o modelli stagionali. Questo metodo funziona meglio per le previsioni a breve gamma di prodotti maturi che per i prodotti nelle fasi di crescita o di obsolescenza del ciclo di vita. Il numero di periodi della storia delle vendite (n) da utilizzare nel calcolo del tempo. Ad esempio, specificare n 4 nella opzione di elaborazione di utilizzare i più recenti quattro periodi come base per la proiezione nel prossimo periodo di tempo. Un grande valore di n (ad esempio 12) richiede più storia di vendita. Tali risultati un valore in una previsione stabile, ma è lento a riconoscere cambiamenti nel livello di vendite. Viceversa, un valore piccolo per n (ad esempio 3) risponde più rapidamente ai cambiamenti nel livello di vendite, ma le previsioni fluttui così ampiamente che la produzione non può rispondere alle variazioni. Il numero totale di periodi per l'opzione di elaborazione rdquo14 - periodi includerdquo non deve superare i 12 mesi. Il peso che viene assegnato a ciascuno dei periodi di dati storici. I pesi assegnati dovranno totale 1.00. Ad esempio, quando n 4, assegnare un peso di 0,50, 0,25, 0,15, 0,10 e con i dati più recenti che ricevono il maggior peso. Minimo richiesto storia delle vendite: n più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: January previsione è pari a (131 volte) 0,10 (114 volte) 0.15 (119 volte) 0.25 (137 volte) 0.50 (0.10 0.15 0.25 0.50) 128.45 arrotondata a 128. Febbraio previsione pari (114 volte 0.10) (119 volte) 0.15 (137 volte) 0.25 (128 volte) 0.50 1 127,5 arrotondata a 128. marzo previsione è pari a (119 volte) 0,10 (137 volte) 0.15 (128 volte) 0.25 (128 volte) 0.50 1 128.45 arrotondato a 128. 3.2.10 metodo 10: Linear Smoothing Questo metodo calcola una media ponderata dei dati di vendita del passato. Nel calcolo, questo metodo utilizza il numero di periodi della storia degli ordini di vendita (da 1 a 12) che è indicato nella opzione di elaborazione. Il sistema utilizza una progressione matematica pesare i dati nell'intervallo dal primo (almeno peso) al finale (più peso). Quindi il sistema proietta queste informazioni per ciascun periodo di previsione. Questo metodo richiede i mesi migliori Fit Plus la storia ordine di vendita per il numero di periodi che sono specificati in opzione di elaborazione. 3.2.10.1 Esempio: Metodo 10: Linear Smoothing Questo metodo è simile al metodo 9, WMA. Tuttavia, invece di assegnare arbitrariamente pesi ai dati storici, una formula viene utilizzata per assegnare i pesi che declinano in modo lineare e sommare a 1.00. Il metodo calcola una media ponderata di recente storia delle vendite per arrivare ad una proiezione per il breve termine. Come tutte le tecniche di previsione in movimento media lineari, pregiudizi meteorologiche e errori sistematici si verificano quando la storia di vendita del prodotto presenta forte tendenza o modelli stagionali. Questo metodo funziona meglio per le previsioni a breve gamma di prodotti maturi che per i prodotti nelle fasi di crescita o di obsolescenza del ciclo di vita. n è uguale al numero di periodi della storia delle vendite da utilizzare nel calcolo del tempo. Ad esempio, specificare n è uguale a 4 nell'opzione di elaborazione di utilizzare i più recenti quattro periodi come base per la proiezione nel prossimo periodo di tempo. Il sistema assegna automaticamente i pesi ai dati storici che il declino lineare e somma da 1,00. Per esempio, quando n è uguale a 4, il sistema assegna pesi di 0,4, 0,3, 0,2, e 0,1, con i dati più recenti che ricevono il maggior peso. Minimo richiesto storia delle vendite: n più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzato nel calcolo del tempo: 3.2.11 Metodo 11: livellamento esponenziale Questo metodo calcola una media levigato, che diventa una stima che rappresenta il livello generale delle vendite nel corso dei periodi di dati storici selezionati. Questo metodo richiede storia dei dati di vendita per il periodo di tempo che è rappresentato dal numero di periodi più appropriate più il numero di periodi di dati storici specificati. Il requisito minimo è di due periodi di dati storici. Questo metodo è utile per prevedere la domanda quando nessuna tendenza lineare è nei dati. 3.2.11.1 Esempio: Metodo 11: livellamento esponenziale Questo metodo è simile al metodo 10, Linear Smoothing. In Linear Smoothing, il sistema assegna pesi che declinano in modo lineare ai dati storici. In esponenziale, il sistema assegna pesi che in modo esponenziale decadimento. L'equazione per la previsione esponenziale è: alpha Previsione (precedenti vendite effettive) (1 ndashalpha) (precedente previsione) La previsione è una media ponderata delle vendite effettive rispetto al periodo precedente e le previsioni rispetto al periodo precedente. Alpha è il peso che viene applicato alle vendite effettive del periodo precedente. (1 ndash alfa) è il peso che viene applicato alla previsione per il periodo precedente. Valori per gamma alpha da 0 a 1 e di solito cadono fra 0,1 e 0,4. La somma dei pesi è 1.00 (alpha (1 ndash alfa) 1). Si dovrebbe assegnare un valore per la lisciatura costante, alfa. Se non si assegna un valore per la costante di smoothing, il sistema calcola un valore assunto che si basa sul numero di periodi della storia delle vendite che è specificato nella opzione di elaborazione. alpha pari alla costante di smoothing che viene utilizzato per calcolare la media lisciata per il livello generale o la grandezza delle vendite. Values for alpha range from 0 to 1. n equals the range of sales history data to include in the calculations. Generally, one year of sales history data is sufficient to estimate the general level of sales. For this example, a small value for n (n 4) was chosen to reduce the manual calculations that are required to verify the results. Exponential Smoothing can generate a forecast that is based on as little as one historical data point. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.12 Method 12: Exponential Smoothing with Trend and Seasonality This method calculates a trend, a seasonal index, and an exponentially smoothed average from the sales order history. The system then applies a projection of the trend to the forecast and adjusts for the seasonal index. This method requires the number of periods best fit plus two years of sales data, and is useful for items that have both trend and seasonality in the forecast. You can enter the alpha and beta factor, or have the system calculate them. Alpha and beta factors are the smoothing constant that the system uses to calculate the smoothed average for the general level or magnitude of sales (alpha) and the trend component of the forecast (beta). 3.2.12.1 Example: Method 12: Exponential Smoothing with Trend and Seasonality This method is similar to Method 11, Exponential Smoothing, in that a smoothed average is calculated. However, Method 12 also includes a term in the forecasting equation to calculate a smoothed trend. The forecast is composed of a smoothed average that is adjusted for a linear trend. When specified in the processing option, the forecast is also adjusted for seasonality. Alpha equals the smoothing constant that is used in calculating the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. Beta equals the smoothing constant that is used in calculating the smoothed average for the trend component of the forecast. Values for beta range from 0 to 1. Whether a seasonal index is applied to the forecast. Alpha and beta are independent of one another. They do not have to sum to 1.0. Minimum required sales history: One year plus the number of time periods that are required to evaluate the forecast performance (periods of best fit). When two or more years of historical data is available, the system uses two years of data in the calculations. Method 12 uses two Exponential Smoothing equations and one simple average to calculate a smoothed average, a smoothed trend, and a simple average seasonal index. An exponentially smoothed average: An exponentially smoothed trend: A simple average seasonal index: Figure 3-3 Simple Average Seasonal Index The forecast is then calculated by using the results of the three equations: L is the length of seasonality (L equals 12 months or 52 weeks). t is the current time period. m is the number of time periods into the future of the forecast. S is the multiplicative seasonal adjustment factor that is indexed to the appropriate time period. This table lists history used in the forecast calculation: This section provides an overview of Forecast Evaluations and discusses: You can select forecasting methods to generate as many as 12 forecasts for each product. Each forecasting method might create a slightly different projection. When thousands of products are forecast, a subjective decision is impractical regarding which forecast to use in the plans for each product. The system automatically evaluates performance for each forecasting method that you select and for each product that you forecast. You can select between two performance criteria: MAD and POA. MAD is a measure of forecast error. POA is a measure of forecast bias. Both of these performance evaluation techniques require actual sales history data for a period specified by you. The period of recent history used for evaluation is called a holdout period or period of best fit. To measure the performance of a forecasting method, the system: Uses the forecast formulas to simulate a forecast for the historical holdout period. Makes a comparison between the actual sales data and the simulated forecast for the holdout period. When you select multiple forecast methods, this same process occurs for each method. Multiple forecasts are calculated for the holdout period and compared to the known sales history for that same period. The forecasting method that produces the best match (best fit) between the forecast and the actual sales during the holdout period is recommended for use in the plans. This recommendation is specific to each product and might change each time that you generate a forecast. 3.3.1 Mean Absolute Deviation Mean Absolute Deviation (MAD) is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD is a measure of the average magnitude of errors to expect, given a forecasting method and data history. Because absolute values are used in the calculation, positive errors do not cancel out negative errors. When comparing several forecasting methods, the one with the smallest MAD is the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, a simple mathematical relationship exists between MAD and two other common measures of distribution, which are standard deviation and Mean Squared Error. For example: MAD (Sigma (Actual) ndash (Forecast)) n Standard Deviation, (sigma) cong 1.25 MAD Mean Squared Error cong ndashsigma2 This example indicates the calculation of MAD for two of the forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.1.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: Mean Absolute Deviation equals (2 1 20 10 14) 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. When forecasts are consistently too high, inventories accumulate and inventory costs rise. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. In services, the magnitude of forecast errors is usually more important than is forecast bias. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way.1pare linear regression to the moving averages and smoothing techniques used in Week 1. Why is linear regression more appropriate for long-range 1pare linear regression to the moving averages and smoothing techniques used in Week 1. Why is linear regression more appropriate for long-range forecasts 2.Can we use a linear regression to predict sales Costs Cash flow Non-financial information 3.LINEAR REGRESSION QUESTIONS A. Can the concept of linear regression be used to forecast your cell phone bill, assuming that your total monthly cost includes a fixed, minimum amount, as well as a variable amount that is charged for extra usage ampgt Lets say your cell phone bill is 50 per month, plus a variable charge of 0.40 per minute if you go over 700 minutes. Lets also say that your February bill just arrived and is 100.00 (ignore taxes). b. What would the equation look like Write out the equation for a straight line, then write it again with the variables given. c. How many TOTAL minutes did you talk in September d. Could you use this information to forecast how much your total phone bill would be if you were to talk 900 minutes and 1,200 minutes 4.What is seasonality, and what role does it play in regression analysis 5.A seasonality factor is a predictable condition or event that causes fluctuations in outcomes. If you know that certain events or conditions will affect financial results, then those should be incorporated into your projections. ampgtSales per year are 360,000. The business is open 360 days per year. ampgtOn an annual basis, average daily sales are 1,000. ampgtBut, sales are twice as high in the Spring and Summer quarters a as they are in the Fall and Winter quarters. ampgt The high quarters have average daily sales of 1,333 for six months. ampgt The low quarters have average daily sales of 667 for six months. ampgt This company has a pronounced seasonal factor. QUESTIONS 1. What is a seasonal ratio 2. How do we calculate it Student posted a question middot Mar 09, 2011 at 7:50pmSmoothing data removes random variation and shows trends and cyclic components Inherent in the collection of data taken over time is some form of random variation. There exist methods for reducing of canceling the effect due to random variation. An often-used technique in industry is smoothing. This technique, when properly applied, reveals more clearly the underlying trend, seasonal and cyclic components. There are two distinct groups of smoothing methods Averaging Methods Exponential Smoothing Methods Taking averages is the simplest way to smooth data We will first investigate some averaging methods, such as the simple average of all past data. A manager of a warehouse wants to know how much a typical supplier delivers in 1000 dollar units. Heshe takes a sample of 12 suppliers, at random, obtaining the following results: The computed mean or average of the data 10. The manager decides to use this as the estimate for expenditure of a typical supplier. Is this a good or bad estimate Mean squared error is a way to judge how good a model is We shall compute the mean squared error . The error true amount spent minus the estimated amount. The error squared is the error above, squared. The SSE is the sum of the squared errors. The MSE is the mean of the squared errors. MSE results for example The results are: Error and Squared Errors The estimate 10 The question arises: can we use the mean to forecast income if we suspect a trend A look at the graph below shows clearly that we should not do this. Average weighs all past observations equally In summary, we state that The simple average or mean of all past observations is only a useful estimate for forecasting when there are no trends. If there are trends, use different estimates that take the trend into account. The average weighs all past observations equally. For example, the average of the values 3, 4, 5 is 4. We know, of course, that an average is computed by adding all the values and dividing the sum by the number of values. Another way of computing the average is by adding each value divided by the number of values, or 33 43 53 1 1.3333 1.6667 4. The multiplier 13 is called the weight . In general: bar frac sum left ( frac right ) x1 left ( frac right ) x2 , . , , left ( frac right ) xn . The ( left ( frac right ) ) are the weights and, of course, they sum to 1.

Comments